
S

Sebastian Verheughe
Chief Enterprise Architect @ FINN.no

FINN fagkveld - 7 March 2017

Beyond "Hello World"
handling complexity and organization with large systems

• You will learn about real challenges we observe at FINN

• You will learn how we try to solve these challenges

• I will provide you with some recommendations…

What to Expect

Did you really think
FINN has everything solved?

Partitioning of FINN
Chapter I

The Value of Domain Driven Design

“Getting service boundaries wrong can be expensive. It can lead to a larger
number of cross-service changes, overly coupled components, and in general

could be worse than just having a single monolithic system”

Sam Newman, Thoughtworks

Extract from the article Microservices for greenfields?

Dependency Graph of FINN

With microservices, each service is simpler but the distributed environment is more complex

Risk of Unhandled Complexity
Key areas with unhandled complexity, may damage your business

C
om

pl
ex

ity

Time

Point of Total Rewrite
(or worse)

Missed Business
Opportunities

Simple
full speed ahead

The
Twilight

Zone

Complex
What happened?

Conceptual Architecture of FINN
Not only microservices, monolithic front-end and legacy system/database

Front-EndFEFEFE

Legacy
(Big Ball of Mud)

µsµsµsµsµsµsµsµsµs

API

The highest complexity seems to be related to a few central structures,
and especially legacy database integration makes it hard to split.

µsµsµsµsµsµs

Front-End

Architecture Challenges @ FINN

• A few central structures with high complexity used in many contexts proves
very hard to modify and can cause unintended behavior elsewhere.

• High coupling between services and long request call chains affects
performance and availability negatively (8 fallacies of distributed computing).

• Clients aggregating services become monolithic front-ends, bottleneck, single-
points-of-failures, and require / desire standardization

• Sharing data in a good way without lots of dependencies.

Should we partition by business entities, business objectives or both?

Partitioning Strategy

Customer Service

Agreement Service

Store Service

Login Service

User Service

Authentication Service

Enrollment Service
Review Service

Challenges with Services Based on Entities

They don´t do one thing well
(black holes of IT systems)

Customer
Customer
Service

Id
Password
Billing Address
Credit Card
Purchases
Shipping Address

Mr. Customer, what do you do?

Front-End Client

Service Service

Benefits with Services Based on Objectives

Auth ShippingTradeSalesBilling

Customer Id
Billing Address

…

Customer Lead Id
Interests
…

Customer Id
Password

…

Customer Seller Id
Customer Buyer Id

Object Id

Customer Id
Shipping Address

…

They do one thing well!
(and use multiple models of entities, e.g. Customer to do so)

Well, we all know why we need Mr. Billing around…

Front-End Client

Transactional business boundary

Aligning the Architecture with the Business
Technical solutions align with business capabilities (objectives / domains)

Rum
p

Rib

Tenderloin

Business
Domain

Tech
Solution

Product
Sales

Advertising Billing Communication

They will be stable, with a minimum of dependencies between them,

and form transactional boundaries from a user / business perspective

Target Architecture (we call it direction in FINN)
The front-ends aggregate responses from services clustered by domain

Partitioning applies to both front-end (components) and back-end
Capability / domain (problem space) & services (solution space)

Front-End

Message BUS (utilizing eventual consistency)

Front-End

Authentication Product Sales Billing ShippingAdvertising

µs

COMP

µs

µs

µsµs

µs

µs µs µs
µs

Service /
System

COMP COMP

COMP COMP

COMP

COMP COMP

COMP

Architecture Recommendations

Invest heavily in building competence around distributed systems design - NOW!
Writing a single microservices is easy, testing and running hundreds together is hard.

Tomorrow: Use a circuit breaker (Hystrix), use pub-sub between two services to communicate,
mock dependencies between two services for testing, read “8 fallacies of distributed systems”.

Design you services around business objectives, with several entity models
Tomorrow: select a complex entity service (or table) and divide it by different known contexts

Organization Strategy
Chapter II

Organizational Observations @ FINN

• Many features required several hand-offs between teams in order to be solved.

• Teams where not able deliver a complete user / business capability by themselves.

• Layered teams sometimes became overly focused about technical perfection.

• Static teams made it difficult to move resources to changing business challenges.

Conway's Law

“Organizations which design systems ... are constrained to produce designs
which are copies of the communication structures of these organizations”

 Melvin E. Conway

Extract from the paper How do Committees Invent?

Corollary to Conway´s Law

“If you design a system, but you didn´t design the organization structure,
you´re not the system´s designer.”

 Mathias Verraes
Extract from Twitter

How to Partition Organizations in General
“…Organizations can come in two extreme forms:

in totally mission-oriented form or in totally functional form…

In the real world, of course, we look for a compromise between the two extremes”
- Andy Groove (book: High Output Management)

However, with every partitioning of the organization, it is
extremely important to compensate in the orthogonal

direction in order to avoid silo organizations, sub
optimizations, and failing to deliver on challenges

across the organization.

Aligning the Organization with the Business
The organization should align with the business (and the technical solution)

The goal was an organization that more effectively was able to deliver on the business challenges
Inverse Conway Maneuver: Organize to promote your desired architecture (end state)

Rum
p

Rib

Tenderloin

Org Ownership

Business
Domain

Tech
Solution

Product
Sales

Advertising Billing Communication

Infrastructure

FINN Technology Organization
Organized primarily by business domains, secondarily by cross-cutting concerns

Front-End Platform(s)

Space A

D
om

ai
n

A

D
om

ai
n

B

D
om

ai
n

C

Space B
D

om
ai

n
D

D
om

ai
n

E

D
om

ai
n

F

Space C

D
om

ai
n

G

D
om

ai
n

H

D
om

ai
n

I

Space D

D
om

ai
n

J

D
om

ai
n

K

D
om

ai
n

L

HARDER TO CHANGE

EA
SI

ER
TO

 C
H

AN
G

E

FU
LL

 S
TA

C
K

WebiOSAndroid

ServersDatabasesData BusMon ToolsDeploy PL

All cross-cutting teams are
structured as enabling teams,
meaning they should deliver
self-service solutions upfront
to the vertical functional teams.

Spaces allows for Flexible Developer Allocation
This is how we are able to move developers around based on prioritization

Space A

A
dv

er
tis

in
g

P
ro

du
ct

 S
al

es

B
illi

ng

TDE

TDE

TDE

DEV

DEV

DEV

SLSL

DEV

DEV

DEV

DEV

DEV

DEV
Space Leads, making it all work / flow.

Developers, available for work that is prioritized.

Technical Domain Experts (tech leads), responsible for the long-term
development of technical solutions supporting a domain, and the
Quality of Service of them.

Same space
2-4 teams

Architects (4 in FINN), responsible for everything that affects multiple
domains…

Teams

Distributing the (central) Apps Team

About 25% of visits are from native apps and growing, but we had one team.

Since we believe that our main biz challenges are not related to native apps development,
it makes sense to focus on full-stack functional and more autonomous teams instead.

Front-End Platform(s)

Space A

D
om

ai
n

A

D
om

ai
n

B

D
om

ai
n

C

Space B
D

om
ai

n
D

D
om

ai
n

E

D
om

ai
n

F

Space C

D
om

ai
n

G

D
om

ai
n

H

D
om

ai
n

I

Space D

D
om

ai
n

J

D
om

ai
n

K

D
om

ai
n

L

WebiOSAndroid

Decentralized Authority (Framing)
The TDEs are free to choose solutions within their domain, no sign-offs needed

Cross-Domain Front-End

Domain Domain Domain DomainDomain

TDE TDE TDE TDE TDE

The architects only govern integration and boundaries between the domains and the front-end,
in addition to help succeeding with the implementation of the strategy.

Reorganization Observations (one year in)
• A single team has proven that they can improve a full-stack capability autonomously,

and it seems like faster (we have no god way of measuring)

• Tech leads are starting to take full-stack responsibility for the capability they deliver.

• The teams can freely choose how they within a domain solve each business challenge,
there are less technical “religious” discussions. And no exploitation of new technologies.

• One year in, the systems does not automagically partition themselves by org. structure,
but needs to be driven in each case. The inverse Conway maneuver only removed barriers.

• The organization structure (silos) works as barriers when cross domain work is needed,
and developers rather wait than contribute if changes are needed in someone else domain. It
may be a smaller problem now, but we need to change the culture and expectations.

Organizational Recommendations

• Primarily align your teams with your business domains, not tech layers

• Decentralize decision making whenever applicable

• Structure cross-cutting teams as enabling teams, not bottlenecks or guards

• Make sure your organization culture encourages cross-organizational collaboration

Being Strategic about Complexity
Chapter III

Living With an Imperfect World
Chances are that your current system is not exactly how you want it to be…

What to do about it…

Domain Domain Domain DomainDomain

Message BUS

Big Ball of
Mud

front-end front-end

Medium
Ball of
Mud

The Total Rewrite Disease

Identifying What Strategic Capabilities to Improve

Strategy: fix the basics, focus on advantages, leave the rest when possible…

THE REST

Basics

Advantages

Avoid feature driven…Ignore how for now…

Customers expect / require…

Why customers choose you…

Identifying the smallest step needed to deliver a modified or new capability

Fastest Minimum Viable Capability

Understanding How & Where to Deliver

When you know what, identify where it should go and how to deliver it.

Domain Domain Domain DomainDomain

Big Ball of
Mud

front-end front-end

Medium
Ball of
Mud

Capability model that needs improvement…

About this time, it might be helpful with an architecture strategy…

Slicing a Part of a the Legacy Model @ FINN
Illustration of how we modified parts of a legacy model without needing to
rewrite all dependencies at the same time / at all. (Strangler Application)

Evil
Monolithic

Big Ball of Mud
Legacy
System

Front-End

1. Identify Domain

New
Narrower

Model

2. Create new master

3. (a)sync data

4. Move master and get business value quick 5, 6, 7, … Rewrite other dependencies gradually (if any biz value)

The goal is not to have the
new model behave identically
to the legacy model.

The entire point is to change
the capability in this case.

Strategic Delivery Recommendations

• Always question large rewrites without a clear strategic user / business value

• Deliver new / modified capabilities outside of legacy monoliths

• Always find the simplest / smallest solution that delivers on strategic capabilities

RISK: While more focused and faster, there is a risk of “unfinished business” which
can have a high cost in the organization (stability, complexity, added maintenance).
There is a need for monitoring and following up these issues continuously.

Data
Chapter IV

Accessing Distributed Data
With smart products and data analytics, how to best access distributed data?

To avoid exponential complexity, move the complexity to the infrastructure

PPPP

CCCC CCCC

PPPP

Message BUS - Kafka

pub

subPublish Domain Events
(not commands)

Pipeline Challenges @ FINN
Challenges we experienced at FINN when learning to use a pipeline

• Reliable messaging is more than a product feature on the message bus

• Introducing event based communication is hard, developers are used to RPC

Data on the Outside versus Data on the Inside

• Article written by Pat Helland many years ago…

Inside –
2 –

O
utside

M
apper

0
1
0
0
1
1
0
1
1
1
1
0
1

0
0
1
1
0
1
1
0
1
0
1
0
0

0
0
1
1
0
1
1
1
1
1
0
0
1
0
0

1
1
0
1
1
1
1
0
0
1
1

1
1
0
1
1
1
1
0
0
1
1

JSON { ”Ad": {"title": ”iphone", ”description": ”new", ”price": ”1” } }

Continuous development
requires flexibility inside

Outside users of data
requires stable contracts

Data Integration Recommendations

• Separate data on the outside formats from data on the inside formats in order to
achieve the best of both worlds.

• Start experimenting with a data pipeline

• Understand business needs for transactional boundaries and when eventual
consistency works and not.

• Avoid point-2-point data integration as key data is likely to be used in many
different contexts. Publish once…

Key Takeaways
1. Partition by business objective (domains), avoid global entity models

2. Organize by business objective, not by competence, technology or process

3. Take the smallest possible step to reach strategic capability, no total rewrites

4. Make your data easily available across the organization to capitalize on it

But more importantly, it all requires an development organization with good
knowledge of the business domain and a great culture for working together

across organizational boundaries.

The End

15.30 –15:45 Velkommen hjem til FINN
15:45 –16:30 Slik jobber vi i FINN
16:30 –17:00 Mat og drikke
17:00 –17:30 Introducing Node.js in an Enterprise
17.30 - 18.00 Beyond "Hello World", handling complexity and organization with large systems

18.00 - 18.15 Pause
18:15 - 18.45 Maskinlæring, anbefalingsalgoritmer og datadrevne produkter
18:45 –19:15 Hvordan vi flytter FINN.no ut i skyen
19:15 – 21:00 Kahoot, drikke og snacks!

Agenda

